ELECTRICAL POWER TRANSMISSION SYSTEMS 35.3.0

Introduction 35.3.01

The module unit is designed to equip the trainee with knowledge, skills and attitudes to install and maintain power transmission lines. The unit covers in-depth analyses of transmission lines, conductor faults and line protection.

General Objectives 35.3.02

At the end of the module unit, the trainee should be able to:

- a) Design electrical overhead transmission schemes
- b) Understand the operating principles of transmission and distribution units
- c) Observe safety and standards when operating transmission lines
- d) Design power systems regulation schemes
- e) Interpret control systems charts in power generating and transmission systems

Module Unit Summary and Time Allocation 35.3.03

Dowar Custame II

Power Systems II						
Code	Sub Module Unit	Content	Time Hrs			
35.3.1	Protection	 Protection schemes Relaying systems Unit protection Non unit protection 	16			
35.3.2	Overhead Line Construction	 Conductor vibrations Conductor tension and sag Corona Synchronous phase modifier 	18			
35.3.3	Overhead Line Transmission	 Classification of lines Surge Surge power and energy Protection against surges 	16			
35.3.4	Overhead Lines Faults	 Symmetrical and asymmetrical faults Equivalent circuits and phase sequence impendence matrix Equivalent circuit for 	18			

			asymmetrical faults	
35.3.5	Power System Stability	•	Stability of asynchronous machine feeding infinite bus bars Steady state stability Surge angle Methods of improving power system stability	20
Total Time				88

easylvet.com

35.3.1 PROTECTION

Theory

- 35.3.1T0 Specific Objectives

 By the end of the sub

 module unit, the trainee
 should be able to:
 - a) describe the systems of protective schemes
 - explain the types of relaying systems
 - c) explain the type of unit protection
 - d) describe the types of non unit protection

Content

- 35.3.1T1 Protective schemes
 - i) Core balance protective schemes
 - ii) Merze price protective schemes
 - iii) Pilot
 - iv) Pilotless
- 35.3.1T2 Types of relaying systems
 - i) Permanent magnet moving coil
 - ii) Balanced beam
 - iii) Induction type over current relay
 - iv) Distance relays
 - v) Directional relays
 - vi) Non directional relays
 - vii) Solid state relays
- 35.3.1T3 Types of unit protection
 - i) Generator protection
 - ii) Transformer protection
 - iii)Bus bars protection
 - iv) Feeder protection
- 35.3.1T4 Non unit protection
 - Directional over current protection
 - ii) Distance protection
 - iii) Grade time protection

Practice

- 35.3.1P0 Specific Objectives

 By the end of the sub module unit, the trainee should be able to:
 - a) Perform tests to show the tripping characteristics of different protective devices
 - b) Demonstrate the working of different types of protection relays

Content

- 35.3.1P1 Performance tests for the tripping characteristics of protective devices
 - i) High Rupturing Capacity fuse (HRC)
 - ii) Miniature Circuit Breakers (MCB)
- 35.3.1P2 Demonstration of the working of different types of relays
 - i) Distance
 - ii) Directional
 - iii) Non directional

35.3.1C Competence

The trainee should have the ability to control power lines in transmission systems to maintain

Suggested teaching/Learning

Activities

- Discussion
- Illustration
- Demonstration
- Note taking

Practical exercise continuity of supply

Suggested teaching /learning resources

- i) Assorted relays
- ii) Cabling and accessories
- iii) Test board
- iv) Measuring instruments

Suggested Evaluation Methods

- Oral tests
- Timed written tests
- Assignments
- Timed practical tests

35.3.2 OVER HEAD LINE CONSTRUCTION

Theory

- 35.3.2T Specific Objectives
 By the end of the sub
 module unit, the trainee
 should be able to:
 - a) explain the types of conductor vibrations
 - b) differentiate between types of conductors sag and tension
 - c) describe the corona phenomena in overhead transmission lines
 - d) explain the principles of the operation of the synchronous phase modifiers

Content

- 35.3.2T1 Types of conductor vibrations
 - i) Swinging
 - ii) Dancing

- iii) Galloping of conductors
- iv) High frequency vibrations
- 35.3.2T2 Differentiation of conductor sag and Tension
 - i) Catenary methods
 - ii) Unequal and equal ground level
 - iii) Effects of wind and ice loading
- 35.3.2T3 Description of the corona phenomena
 - i) Disruptive
 - ii) Visible
 - iii) Critical
- 35.3.2T74 Explaining the principles of operator of the synchronous phase modifier
 - i) lagging and leading VARs
 - ii) Voltage drop compensation

Practice

- 35.3.2P0 Specific Objectives
 By the end of the sub
 module unit, the trainee
 should be able to:
 - a) install different types of model transmission lines using different materials
 - b) perform experiments to demonstrate conductor sag

Content

35.3.2P4 Experiments to demonstrate conductor sag

35,3,2C Competence

The trainee should have the ability to Install, test and maintain overhead line poles and conductors

Suggested teaching/Learning Activities

- Discussion
- Illustration
- Demonstration
- Note taking
- Practical exercise

Suggested Teaching/Learning Resources

- i) Overhead line insulators
- ii) Test instruments

Suggested Evaluation Methods

- Oral tests
- Timed written tests
- Assignments

35.3.3 OVERHEAD LINE TRANSMISSION

Theory

- 35.3.3T0 Specific Objectives

 By the end of the sub

 module unit, the trainee
 should be able to:
 - a) classify transmission lines
 - b) explain the causes for surges in transmission lines
 - c) explain the phenomena of surges in transmission lines systems
 - d) describe the protection of surges against over voltages

Content

- 35.3.3T1 Classification of transmission lines
 - i) Short lines
 - ii) Medium lines
 - iii) Long line
- 35.3.3T2 Types of surges in transmission lines
 - i) Direct and indirect lighting strokes
 - ii) Switching surges due to
 - iii) Open circuited lines
 - iv) Short circuited lines
 - v) Load interruption
 - vi) Arching ground lines
- 35.3.3T3 Explanation of the phenomena of surges in transmission line systems
 - i) Surge velocity
 - ii) Surge impendence
 - iii) Open circuited lines
 - iv) Short circuited lines
- 35.3.3T4 Protection of transmission lines against surges effect and over currents
 - i) Overhead earth wire
 - ii) Horn gaps
 - iii) Silicon and zinc oxide surge diverter
 - iv) Peterson coil

Practice

35.3.3P0 Specific Objectives
By the end of the sub
module unit, the trainee
should be able to protect
overhead lines against
the phenomenon of
surge

Content

35.3.3P1 Protection of overhead lines against surges

i) Overhead earth wire

- ii) Hom gaps
- iii) Silicon and Zinc oxide surge diverter
- iv) Peterson coil

35.3.3C Competence The trainee should have the ability to Install surge diverters to prevent the surge effects

Suggested Teaching/Learning resources

- Protective devices
- Insulators
- Visits to industries

Suggested teaching/Learning Activities

- Discussion
- Illustration
- Demonstration
- Note taking
- Practical exercise

Suggested Evaluation Methods

- Oral tests
- Timed written tests
- Assignments
- Timed practical tests

35.3.4 OVERHEAD LINE FAULTS

Theory

- 35.3.4T0 Specific Objectives

 By the end of the sub

 module unit, the trainee
 should be able to:
 - a) explain types of power line faults
 - b) describe the symmetrical and asymmetrical faults

- c) outline the equivalent circuit for the asymmetrical faults
- d) explain the operation of the equivalent circuit and phase sequence impendence matrix

Content

- 35.3.4T1 Types of power line faults
 - Single phase earth faults
 - ii) Three phase balanced fault
 - iii) Line to line ground fault
 - iv) Line to line fault
 - v) Arching ground fault
- 35.3.4T2 Description of symmetrical and asymmetrical faults
 - i) Balanced faults
 - ii) Unbalanced faults
 - iii) Positive, negative and zero sequence vectors
 - iv) Impendence connection matrix for faults
- 35.3.4T3 The equivalent circuit for the asymmetrical faults
- 35.3.4T4 Operation of the equivalent circuit and phase sequence impedance matrix

Practice

- 35.3.4P0 Specific Objectives
 By the end of the sub
 module unit, the trainee
 should be able to:
 - a) draw equivalent circuits for the phase sequence matrix
 - b) simulate equivalent circuit and determine the sequence impendence matrix

- c) verify through experiment the difference between
- d) symmetrical and asymmetrical faults

Content

- 35.3.4P1 Equivalent circuit for phase sequence matrix
- 35.3.4P2 Circuit simulation
- 35.3.4P3 Symmetrical and asymmetrical faults verification

35.3.4C Competence

The trainee should have the ability to:

- Determine line faults for symmetrical and asymmetrical
- conductors
- Simulate faults and apply them to determine protective devices ratings

Teaching /Learning resources

- Experimental models for fault levels
- Measuring instruments

Suggested Evaluation Methods

- Oral tests
- Timed written tests
- Assignments
- Timed practical tests

35.3.5 POWER SYSTEM STABILITY

Theory

35.3.5T0 Specific Objectives

By the end of the sub module unit, the trainee should be able to:

- a) describe the stability of the synchronous generator feeding infinite bus bars
- derive the equal area criteria for transient stability
- c) derive the swing equation
- d) describe the method for improving power system stability

Content

35.3.5Tl Description of synchronous generators stability

- Power transfer regulation

35.3.5T2 Derivation of equal area criteria

- i) Change in load
- ii) Change in transfer reactance due to switching
- iii) Change in transfer reactance due to fault
- 35.3.5T3 Derivation of the swing equation
- Load angle/time curve
 35.3.5T4 Description of methods
 of improving system
 stability Turbine
 governor
 - Automatic voltage regulations

Practice

35.3.5P0 Specific Objectives
By the end of the sub
module unit, the trainee
should be able to:

- a) connect the synchronous machine to adjust to infinite bus bars
- b) set the synchronous machine to adjust excitation

Content

- 35.3.5P1 Connection of synchronous machine to infinite bus bars
 - i) Syncro -scope
 - ii) Lamps dark method
 - iii) Lamps bright method
- 35.3.5P2 Setting of the synchronous machine to adjust excitation system:
 - i) Leading power factor
 - ii) Lagging power factor

35.3.5C Competence

The trainee should have the ability to connect test and run synchronous machine to infinite bus bars

Suggested Teaching/Learning Resources

- Synchro scope
- Generating machine
- Lamps
- Accessories

Suggested Evaluation Methods

- Oral tests
- Timed written tests
- Assignments
- Timed practical tests